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ABSTRACT 

By an wl-tree we mean a tree of power 0~l and height w~. We call an 
tax-tree a Jech-Kunen tree if it has ~-many branches for some ~ strictly 
between wl and 2 ~1 . In this paper we construct the models of CH plus 
2 ~1 > ,~, in which there are Jech-Kunen trees and there are no Kurepa 
trees. 

An  part ial ly ordered set, or  poset  for short ,  (T, <T)  is called a tree if for 

every t E T the set {s E T:  8 < T  t} is well-ordered under  <T- The  order  

type  of tha t  set is called the height of t in T,  denoted by htT(t) .  We will not  

dist inguish a tree f rom its base set. For every ordinal  a ,  let Ta, the a - t h  level 
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of T, = {t E T: htT(t) ---- tr} and T r tr = U#<a T~. Let h t ( r ) ,  the height of 

T, is the smallest ordinal a such that Ta = 0. By a b r a n c h  of T we mean 

a linearly ordered subset of T which intersects every nonempty level of T. Let 

B(T) be the set of all branches of T. T' is called a s u b t r e e  of T if T' C_ T and 

<T' = < T  N T' x T' (T' inherits the order of T). 

T is called an wl-tree if ITI  = and ht(T) = Wl. An wl-tree T is called a 

K u r e p a  t r ee  if IB(T)I > ~: and for every a E Wl, IT~I < ~1. An wl-tree is 

called a J e c h - K u n e n  t r ee  if w~ < IB(T)I < 2 '~'. 

The independence of the existence of Kurepa trees was proved by J. H. Silver 

(see [K2, w of Chapter VInl). T. Jech in [Jell constructed by forcing a model of 

CH plus 2 '~1 > w2, in which there is a Jech-Kunen tree. In fact, it is a Kurepa 

tree with fewer than 2~l-many branches. The independence of the existence of 

Jech-Kunen trees under CH plus 2 ~'~ > w2 was given by K. Kunen [K1]. In 

his paper he gave an equivalent form of Jech-Kunen trees in terms of compact 

Hausdorff spaces. The detailed proof can be found in [Ju, Theorem 4.8]. 

In both Silver and Kunen's proofs, the existence of a strongly inaccessible 

cardinal was assumed (the assumption is also necessary). The technique they 

used to kill all Kurepa trees or Jech-Kunen trees is to show that if an wl-tree T 

has a new branch in an wl-closed forcing extension, then T must have a subtree 

which is isomorphic to (2<~,C) ,  a complete binary tree of height ~1. So in 

Kunen's model not only all Jech-Kunen trees are killed, but also all Kurepa 

trees are killed. 

R. Jin in [Jil] started discussing the differences between Kurepa trees and 

Jech-Kunen trees. He showed that  it is independent of CH plus 2 "1 > w2 that  

there exists a Kurepa tree which has no Jech-Kunen subtrees. He also showed 

that  it is independent of CH plus 2 '~1 > w2 that there exists a Jech-Kunen tree 

which has no Kurepa subtrees. In his proofs some strongly inaccessible cardinals 

were assumed and later, Kunen eliminated the large cardinal assumption for one 

of the proofs. 

In [Ji2] Jin proved that  assuming the existence of two inaccessible cardinals, it 

is consistent with CH plus 2 w~ > t~2 that  there exist Kurepa trees and there are 

no Jech-Kunen trees. 

The problem whether CH plus 2 ~1 > w2 is consistent with that  there exist 

Jech-Kunen trees and there are no Kurepa trees, was posed in [Ji2]. W e  will an- 

swer the question in this paper by assuming naturally the existence of a strongly 
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inaccessible cardinal. 

Before proving our results we need more notations and definitions. 

A tree T is called n o r m a l  if, 

(1) every t E T has at least two immediate successors, 

(2) for every t E T and an ordinal a such that htT(t) < a < ht(T), there exists 

t '  E T~ such that  t <T t'. 

A tree C = {c,: s E 2 <o,} is called a C a n t o r  t r ee  if the map s ~-~ c, is an 

isomorphism from (2 <o,, C_) to C. For convenience we assume, from now on, that  

every tree considered in this paper is a subtree of (2 <~ , C) with the unique root 

0. By that  way we can define the least upper bound of an increasing sequence 

in a tree by taking its union. Let lira(w1) be the set of all limit ordinals in wt. 

Let T be a tree and 6 E lira(w1). A subtree C of T is called cofinal  in T [6 if 

for every B e B(C), the set {htT(t): t e B} is cofinal in 6. T is called c o mp l e t e  

a t  level 6 if for every B E •(T [ 6), U B e T6. T is called p r o p e r l y  p r u n e d  

a t  level 6 if for every Cantor subtree C = {c,: s �9 2 <o, } of T which is cofmal in 

T I6, there exist jr, g �9 2 ~, such that  l..J.e,,. , c l r .  �9 T6 and [..,J-o+, c.+'t" r T6 

Let S C_ lira(w1). A tree is called S-proper ly  p r u n e d  if for every a �9 lira(w1), 
a r S implies that  T is complete at level a,  and a �9 S implies that  T is properly 

pruned at level a. 

Let I be an index set and T be a tree. For every F �9 T I, let supt(F),  the 

support of F ,  be the set {i �9 I: F(i) r 0}. Let F, G �9 T I. Define F ~ G iff 

for every i �9 I, F(i) <_ G(i). We call F �9 T I u n i f o r m  at 6 for some 6 �9 wl if 

for every i e supt(F),  htT(F(i)) = 6. Let C = {Fo: s E 2 <o,} C_ T I be a Cantor 

tree (under 4). C is called u n i f o r m l y  coflnal  in (T [6) ! for some 6 �9 wt if 

for every 8 �9 2 <~ there is a 6, < 6 such that F,  is uniform at 6~ and for every 

i �9 [J~ supt(F,) ,  the subtree {Fo(i): s �9 2 <~} of T is cofinal in T 16. We 

use 2- for the word "incompatible". For example, for any 8, t �9 2 <o,, 8 2_ t means 

s [J t is not a function. For any F, G �9 T z, we call that F and G are com- 

p le te ly  i n c o m p a t i b l e  if for any i �9 supt(F) and any j �9 supt(G), F(i) 2_ G(j) 
(F(i) and G(j) have no common upper bound in T). Now C is called s e p a r a t e d  

if for any s, s' �9 2 <~', s 2_ 8' implies that F,  and F,, are completely incompatible. 

Let T be a tree and 6 �9 lira(w1). We recall that T is p r o p e r l y  p r u n e d  

in countable products  at  level 6 if for every Cantor tree C = {Fo: s �9 

2 <o,} C T I, which is separated and uniformly cofinal in (T p 6)o,, there exist 

f ,g  �9 2o, such that  for every i �9 [.J,eo,supt(Ffl,),  [J ,e~Fil , ( i  ) �9 T~ and for 
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every i 6 Unaw supt(Fgl.) ,  UntwFaI , ( i )  r T6. 

Let S C lira(w,). A tree is called S - p r o p e r l y  p r u n e d  in c o u n t a b l e  p r o d -  

ue t s  if for every a E lim(o~,), a r S implies that T is complete at level a,  and 

a 6 S implies that T is properly pruned in countable products at level a. 

LEMMA 1: Let T be a tree and I be an index set. For any Cantor tree C = 

{F,: s 6 2 <w } ___ T I, if  C is separated, then for any f ,  g 6 2 ~, f # g imp/ies that 

(U,r  Ffln(i))iet and {U,e~ Fot,(i))iez are completely incompatible. 

Proo~ Let i 6 U , e ~ s u p t ( F f i , )  and j 6 U ,e~sup t (Fg t , ) .  Let m 6 w such 

that i 6 supt(F/Im), ] 6 supt(Foi,~ ) and f I m #  g Ira. Then U,e~Fi i , ( i )  and 

U,eo~F~I,(j) are compatible implies that FSI , ( / )  and Fol , ( j  ) are compatible, 

a contradiction. | 

LEMMA 2 (CH): For any S C lira(w,), there exists a norma/o~l-tree which is 

S-properly pruned in countable products. 

Proof: We construct T6 C 2 ~ reeursively on ~ < ~1 and T = U~<~ T6 will be 

the tree we want. 

CASE h 6 = fl + 1 for some fl 6 w~. Let T~ = {f{l): t 6 T#, I = 0, 1}. 

CASE 2:6 e lim(o;l) \ S. Let T, = {UB: B 6 B(rr~)}. 

CASE 3: ~ ~ S. Let C be the set of all Cantor trees which are separated and 

uniformly cofinal in (T I6)  w. By CH we have that ]C I < ( ~ ' ) ~  = w,. Let 

C = {Ca: a 6 wl} be an enumeration, where C a = {F,a: s E 2<~} .  We now 

want to find a set X C_ {UB:  B 6 B(T I5)} such that for every a E wl, there are 

f ,  g 6 2 ~ such that 

{U F~m(i): i 6 w} C xU{o } 

and 

{U F;,.(O" i  }Nx = 0 
nE~a 

If X is found, we let T6 = X. 

We now build X 7 and Y'r recursively such that, 

(1) X 7 and Y't are countable, 

(2) 7 < 7' < wl implies that X.r C_ X.~, and Y.~ C_ Y.e, 

(3) X 7 N ]"7 = ~ for every 3' 6 wl, 
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(4) for every 7 E Wl, there exist f, g E 2 w such that {LJnew FTrn(i): i E w} _c 

and {U. w i e c_ 
Let X0 -- Y0 -- 8. Let X~ -- U#<~Xp and Y'r -- U#<-~Y# i f 7  E lira(w1). For 

7 + 1, since X7 and Y~ are countable and C 7 is separated, by Lemma 1, there 

exist f ,  g E 2 w, f ~ g such that 

Hence let 

and 

new new 

X-~+I = x.yU{ u F~ln(i): i E U supt(F~ln)} 
new new 

= U supt(F;,.)}. 
new new 

Then X = U~ewl X'r is the set we want. | 

LEMMA 3: Let S C_ lira(COl). T is S-properly pruned in countable products 
implies that T is S-properly pruned. 

Proof." If C = {c,: s 6 2 <~ c_ T is a Cantor tree which is cofmal in T r6 for 

some 6 6 5, then the Cantor tree D = {F,: s 6 2 <~} C_ T ~, where F,(0) = Co 

and F~ = ~ for every i # 0, is separated and uniformly cofinal in (T f S) ~. 

I 

LEMMA 4: Let S C lim(wl) and T be S-properly pruned/n countable products. 

Let C = {F,: s E 2 <~} be a separated and Imlformly CO, hal Cantor subtree/n 

(T r~) ~, for some ~ E ,S'. Then there are uncountably many f E 2 '~ such that for 

every i E U , r  supt(F/tn),  Une~ FYtn(i) E T6. 

Proof: Suppose that the 1emma is not true. Then we can find a Cantor subtree 

C ~ = {F]: s E 2 <~} C_ C such that for every f E 2 ~, there exists i E w, 

Une~ F;tn(i) ~- T~. Since C t is a subtree of C, C ~ itself is also separated and 

uniformly cofinM in (T r 6) w. That contradicts the definition of the S-properly 

prunedness in countable products. I 

Next we shall use the forcing method to construct desired models. For the 

terminology and basic facts of forcing, see [K2] and [Je2]. We always assume the 

consistency of ZFC and let M be always a countable transitive model of ZFC. In 
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the forcing arguments, we always let h be a name of a if a is not in the ground 

model. For every element a in the ground model, we will not distinguish a from 

its canonical name. 

Let I ,  J be two sets. Let 

Fn(I, J, wl) = {p: p C I • J is a function and IPl < tM1} 

be a poset ordered by reverse inclusion. Let I be a subset of a cardinal to. Let 

Lv(I, wl) = {p: p C ( I  x Wl) • ir is a function, [p[ < wl 

and V(a, h) �9 dom(p)(p(a, ~) �9 a)} 

be a poset ordered by reverse inclusion. Let T be a tree and I be an index set. 

Let 

P(T,I, wl) = { f :  f �9 T I and [supt(f)[ < wl}. 

The order of P(T, I, wl) is defined as the reverse order of T z, or F <--I'(T,I,,~,) G 

i f fG 4 F .  

LEMMA 5: Let T be a normal wl-tree and I be an index set. For any p,q �9 
F(T,I, wl), there exist p',q' �9 P(T,I, wl) such that f < p and q' < q, p',q' are 
uniform at ~ for some 5 �9 wl, and p ' / s  completely incompatible with q'. 

Proof: Let a fi wl be large enough so that p, q �9 (T r a) I (a exists because 

p, q both have countable supports). Let 5 > a be countable such that  for every 

i e supt(p) 

I{t �9 Ts: p(i) <T t}l >_ w, 

and for every j �9 supt(q) 

I{t q Ts: q(j) <T t}[ >_ w. 

6 exists because T is normal. Let 

surf(p) = {i.:. �9 

and 
supt(q) = { j . : .  �9 

We now define p'(i,) and q'(j,) such that 

p'(i,), q'(j,) E Ts, 
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p ' ( i , )  > p(i,), q ' ( j , )  > q(j,), p ' ( i , )  # q ' ( j , )  

and 

/ ( i . ) , q ' ( j . )  r {lr m < n}. 

Let p'(i) = ~ if i r supt(p) and let q'(j) = 0 if j r supt(q). Then p' and q' are 

the desired dements.  | 

Let P be a poser and D C P. D is called dense  in P if for every p E P there 

is d E D such that d < p. D is ca/led o p e n  in P if for every p E P and d E D, 

p < d implies that p E D. P is ca/led tol-Balre if for any countable sequence 

(Dn: n E to) of dense open subsets of P, [~n~w D ,  is dense in P. 

LEMMA 6: hi M let P be a poser which is tol-Baire. Let G be a P-generic falter 

over M.  Then M f3 M[G] C M. 

Proof: Let h E M[G] be a function from to to A, where A E M. We work in M 

and let p E G such that 

p II- (it is a function from to to A). 

For every n E to, let 

D. = {q e P: q .k p or 3a 6 a(q It- it(n) = a)}. 

Then D .  is dense open in P. Let ~ 6 N.E~ D .  such that ~ < p. Then 

h = {(n, a) 6 to x A: ~ I~" it(n) = a} 6 M. l 

LEMMA 7: Let S C lim(toa) and T be an tol-tree which is S-properly pruned in 

eotmtable products. Then for any index set I, the poset P(T, I, to1) is wi-Baire. 

Proof." For each n 6 to, let Dn be a dense open subset of P(T , I ,  wl). Let 

p E P(T, I ,  wl). We now construct ps 6 P(T, I, Wl) for every s E 2 <'~ inductively 

on the length of s such that, 

(1) po <_ p, 

(2) s C_ t iff pt < Ps, 

(3) there is an increasing sequence (6,: n 6 w) of countable ordinals such that 

for every s 6 2", po is uniform at 6,. 

(4) for every s E 2 <'~ Ps'(o) and Po'O) are completely incompatible, 

(5) for every s 6 2", po E D , .  
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Assume that we have already had po for every s �9 2 <". 

Let s �9 2 "-1 and qa �9 D ,  such that q~ < po. Let 1 = 0,1. By Lemma 5, there 

are q~ < q~ such that q~ and q~ are completely incompatible. Let 

6, =U{htT(q~(i)): i �9 I , s  �9 2"-1 , l  = 0,1} + 1. 

6, is countable because the support of every q~ is countable. 

P(T,I ,  wl) such that p,-q) < q~ and all Ps'q) are uniform at $,. 

because pa-(z) _< qa. 

Let I ~ = ~,e2<~ supt(p~). Then I ~ is countable. 

Let p, -q)  �9 

Po'(0 �9 D. 

cri, = { p .  r i ' :  s �9 2 <''} 

is now a Cantor tree in T ~', which is separated by (4) and uniformly cofinal in 

(T r6) i ' ,  where ~ = [.J,~e~ $,. Since T is S-properly pruned in countable products, 

there exists f �9 2 ~ such that for every i �9 I', U,e,~pli ,( i)  �9 T6 U{0}. 

Let Pl  �9 P(T, I ,  Wl) defined by letting 

and 

ps IX' = < [3 ps,.(i): i �9 i') 
n e w  

p / [ I  "- I '  -= {~. 

Then pI �9 P(T,I ,  wl) and p! < PII, for every n �9 w. So PS <- P and p!  �9 

N.e  D. .  

THEOREM 8: Assume the existence of a strongly inaccessible cardinal. It is 

consistent with Ctt plus 2 ~* > w2 that there ex/sts a Jech-Kunen tree and there 

are no Kurepa trees. 

Proof." Let M be a model of GCH plus that there is a strongly inaccessible 

cardinal x. In M, let T be an wi-tree which is lim(wl)-properly pruned in count- 

able products and let # and )~ be two regular cardinals such that  x _< p < ,~. 

Again in M let P1 = Lv(Ic, w,), P2 = P(T,p,  wl) and Ps = F-(.~,2,Wl). Let 

G = G1 • G~ • Gs be a P1 • P2 • Ps-generic filter over M. We will show that  

-~[G] is a model of CH plus A = 2 ~1 > p _> w2 = x, in which there are no Kurepa 

tree and T is a Jech-Kunen tree with p-many branches. 
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CLAIM 8.1 : M "~ N M[G] C_ M. 

JECH-KUNEN TREES 

Proof of Claim 8.1: We first force with P2. By Lemma 6 and Lemma 7, Ps is 

wl-Baire and forcing with P2 will not add any new countable sequences. Hence 

P1 x Ps is still wl-closed in M[G2]. Then forcing with P1 • P3 will also not add 

any new countable sequences because it is Wl-Closed. 

CLAIM 8 .2 :P1  • Ps • Ps has the tr 

Proof of Claim 8.2: Let 

{(pa,q~,r~): a < ~} C_ P1 • Ps • Ps. 

By the A-system lemma, we can assume that the domains of all pa, the domains 

of all qa and the domains of all ra form three A-systems with roots A1, As and 

As respectively. Since there are less than to-many p's in P1 with domains = A1, 

there are wl-many q's in Ps with domains = As, and there are wl-many r's in 

P3 with domains = A3, then there exist a l  and as in ~ such that  

P~, rA1 =P~2 rA1, q~ rAs = q~3 rAs and r~, rAs = r ~  rA3. 

Obviously (pa,, q~,, ra, ) and (Pa,, qa,, r~, } are compatible. 

Remark: By Claim 8.1 and Claim 8.2, wl and all the cardinals greater than or 

equal to ~ in M are preserved and CH is true in M[G]. In M[G], ~ = ws because 

forcing with P1 collapses all the cardinals between wl and ~ in M. Also in M[G], 

2 ~ = A because forcing with P3 adds A-many subsets of wl. 

CLAIM 8.3: There are no Kurepa trees in M[G]. 

Proof of Claim 8.3: Suppose that is not true. Let K be a normal Kurepa tree 

in M[G]. Since [g[ = Wl, there are 0 < ~, I C_ p with [I[ < w~ and J C A with 

[J[ _< wl such that  

g �9 M[G'] = M[G~ x G~ x G~a], 

where 

G', = G1 N O, ), 

G =GsNP(T,I, wl), 

= C3 NFn(J, 
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G' = G~ • G~ • G~. 

G;' = G, NL~(~- ~,/'~*), 

G~'=G2Nv(T,I,..I,~,), 
a~ = C~ N F n ( ~  \ J~2,oJ1) 

G" = G~' • G'~' • G~'. 

Since M[G'] ~ 2 ~t < ~, there exists 

b E B ( K ) N  M[G] \ M[G']. 

Furthermore 

Isr. J. Math. 

b r M[G'][G~'][G'3'] 

because s -, 0,wz) and Fn(A \ J,2,wz) are wz-closed in M[G']. We now work 

in M[G'][G~'][G'~] and let p e G~ ~ such that  

p I}- (b e B ( K ) N  M[G] \ M[G'][G~'][G~']). 

We construct 

c = {p.: s �9 2 <~} c V(T,g -. X,~,)  

and 

D = {k,: s 6 2 <~} _C K 

such that,  

(1) s g s' iffp,,  < Ps iff k, _< k,,, 
(2) C is separated and uniformly cofmal in (T rg) " ' z  for some g E lim(wz), 

(3) D is cofinal in K r6' for some 6' e lim(wz), 

(4) for every s E 2 < ' ,  p~ I~- k, E b. 
Assume that  we have already had ps and ks for all s E 2 <n. Let 

,'. = U{ht~(k.):, e 2 <~} + I 

and pick s 6 2 "-1. Let I = O, 1. 
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First find p', < p8 such that 

3x �9 K~(V'o IF x �9 b). 

Since 

p'o ll- b r M[G'I[G'~'I[G'~], 

there exist q~ _< p'o and xt > x > k8 such that z0 I x~ and q~ It- zz �9 b. By 

Lemma 5, we can extend q~ to r~ such that r~ are uniform at ao < wl and r~ is 

completely incompatible with r~. Let 

6n = U{ao :  s �9 2 - -1} + 1, 

po-(z) be an extension of r~ such that supt(p~ ) = supt(r~) and Ps'(z) be uniform 

at $,.  This ends the construction. 

Let 6 = Une,~6n, 6' = U,,r 6~n and I' = U,r supt(p,). Then I' is count- 

able. Since T is lim(wl)-properly pruned in countable products and C I I '  is a 

Cantor tree which is separated and uniformly cofmal in (T [ 6) I', then there are 

uncountably many f �9 2 ~ such that pi defined by letting 

pI ( i )  -- I,.J p!r,,( i)  
new 

for e,,,e~ i �9 .t' is a lower bound of {P.rr,.,:, �9 ,,,} in e(T,p,,,o~). (Note that C' 
is in M because no new countable sequences are added.) For every such f there 

exists k! �9 Kv such that p!  I~- k! �9 b and for different f ,  k! are different. That 

contradicts that K is a Kurepa tree. 

CLAIM 8.4: M[G] ~ (IB(T)I = ~,). 

Proof of Claim 8.4: [B(T)[ > p is trivial because forcing with I}2 adds at least 

p-many new branches of T. Since in M[G1][G2], 2 "  =/~, then we need only to 

show that forcing with P3 will not add any new branches of T. 

Suppose that is not true and let b be a branch of T, which is in M[G] 

M[G1][G2]. We now work in M[G~][G~] and let p �9 Gs such that 

plF b �9 B(T)NM[G ] \ M[G1][G2]. 

We can then easily construct C = {p,: s �9 2 <~} _ Fs and D = {to: s �9 2 <~} _ T 

such that 
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(1) s C_ s' iff p,, _< p, i f f t ,  _< to,, 

(2) O is a Cantor tree which is cofinai in Tr~ for some a E lim({0,), 

(3) for every s E 2 <w, p, [b t, E b. 

Since T is lim({01)-properly pruned by Lemma 3, there exists g E 2" such that 

U,e~t#rn ~ T6. But Fs is {01-closed in M[GI][G2] because no new countable 

sequences have been added. Hence there exists pg E Fs such that P9 < P~Fn for 

every n �9 w. This implies that there exists t �9 T6 such that p/[}- t �9 b. Hence 

t= U tgrn �9 T6' 
nE~  

a contradiction. | 

In the model constructed above, we forced only one Jech-Kunen tree. Next 

we will build a model of C / /p lu s  2 ~1 > {02, in which there are no Kurepa trees 

and there are many Jech-Kunen trees with different numbers of branches. 

THEOREM 9: Assume the existence of a strongly inaccessible cardinal. It is 

consistent with Ctt  plus 2 ~ > {02 that there are no Kurepa trees and there are 

Jech-Kunen trees T a for a �9 {0, such that a # ~' implies [B(Ta)[ # [B(T~')[. 

Proof: Let M be a model of GCH and that there exists a strongly inaccessible 

cardinal ~. In M, let 

r = �9 } c 

be a set of different regular cardinals, where A is also a regular cardinal. Again in 

M, let {Sa: a �9 ~o~} be a partition of lim({01) such that every Sa is a stationary, 

and let T a be an ~ol-tree which is Sa-properly pruned in countable products for 

every a �9 {01. In M, let P1 = Lv(~,~Ol), F2 be the product of {P(Ta, pa,OOl): ~ �9 

{O1} with countable supports, and Fs = Fn(A, 2, {01). Let G = G1 x G2 x Gs be 

a P1 x P2 x P3-generic filter over M. Then M[G] is the model we are looking for. 

CLAIM 9.1: M N M[G] _c M. 

CLAIM 9.2:F1 X F2 X PS has the ~-c.c. 

CLAIM 9.3: There are no Kurepa trees in M[G]. 

All the proofs of above three claims are similar to the proofs of corresponding 

claims in Theorem 8. By Claim 9.1 and Claim 9.2, {01 and all the cardinals 

greater than or equal to ~ are preserved. Besides, forcing with P1 collapses all 
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the cardinals between w, and t;. So in M[G], CH is true, tr = wz < A = 2 ~" and 

{pa: a 6 0;1} C[tr A) is still a set of different cardinals. 

CLAIM 9.4: M[G] ~ (IB(T~)I  = ~ )  for  every a e w,.  

Proof of Claim 9.4: Pick an ot 6 (M1. Let P~ = P(T~',g~,w,) and P~'~ be 

the product of {P(TP,/z~,wl): /9 E wl \ {a}} with countable supports. Then 

P2 ~ P~ • F~'~. Let p 6 P2. We let 

SUPT(p) = {a 6 w,: supt(p(a)) # r 

Notice the differences between supt and SUPT. We call an element p 6 P2 a 

uniform at 7 for some 7 6 wl if for every/9 6 SUPT(p), p(/9) is uniform at 7. 

SUBCLAIM 9.4.1: Forcing with p~a will not add any new branches to T% 

Proof of Subda/m 9.4.1: Let G2 = G~' x G~ "a C P~ x P~'% Suppose that  

Subclaim 1 is not true and let b be a branch of T ~ such that  

b 6 M[G1][G2] \ M[G,][G~]. 

We now work in M[G1][G~] and let p E G2 a such that  

p IF b E B(T a) \ M[G1][G~I. 

We construct recursively a normal subtree T' of T a with every level countable, 

and a subset C = {pt: t 6 T'} of P2 a such that, 

(1) for every 6 6 w, there is 76 such that T~ _C T~,  

(2) if 6 6 lira(w1), then 7s = U~<s 7~, 

(3) pm< p, and for any t , t '  6 T', t < t' iff pt, < Pt, 

(4) for every t 6 T~, there is 7', 7s < 7' < 7s+1 such that Pt is uniform at 7', 

(5) if t q T~ for some ~/6 lim(wl), then pt is uniform at htT~ = 7s, 

(6) t _1. t '  implies that Pt(/9) and Pt' (/9) are completely incompatible for every 

/9 6 SUPT(pt) ~ SUPT(p,,), 

(7) for every t 6 T', pt IF t 6 b. 

Assume that  we have already had T' [6 and C [6 = {pt: t 6 T' [ ~}. 

CASE 1 : 6  = 7 + 1 for some 7 6 t,,1. Pick t 6 ~.~ and let l = 0, 1. 

Since 

pt IF b r M[G,][G~], 



14 S. SHELAH AND R. JIN Isr. J. Math. 

there exist it �9 T~,tt > t and q~ < Pt such that 

t 0 l t l  and q~ll-tz�9 

Without loss of generality we can pick tt such that htTo(tl) = 6' for every t �9 T~ 

and l = 0,1, where 

6' > U{7":  Pt is uniform at 7" for some t �9 Tr 

Besides, we can require that q~(~) and ql(/5) are uniform and are completely 

incompatible for every t �9 T~ and/5 �9 SUPT(q t) n SUPT(q~). Let 7' �9 wl such 

that 7' > 6' and 

7' > U ( 7 " :  q~ is uniform at 7" for some t �9 I~ and l =  0,1}. 

Let T~ = {t~: t �9 Tr l = 0,1} and let pt, < q~ such that pt, is uniform at 7'. 

CASE 2 : 6  �9 lira(w1). First 76 can't be in Sa because otherwise every T # for 

t5 �9 Wl \ {a} is complete at level "/6. But in M[G1][G~], T a is still properly pruned 

at level 3'6 because forcing with P1 x P~ adds no new countable sequences, so 

that there exists B �9 B(T ~ I6) such that B has no upper bound in T a. On the 

other hand, {pt: t �9 B} has a lower bound pB in p~-a. Then 

ps IF 3t e T ,(t �9 $) 

implies that B has an upper bound in T ~, a contradiction. 

Assume that 76 e S# for some/5 ~ a. Since in M[G1][G~], T ~ is properly 

pruned at level 3'6, then for every t E T' I6 there exists Bt E B(T ~ I6) such that 

t G Bt and (Ut'~B, pt,(/5)(i))i~ e P(T~,/~,wx). 

Now every T #' is complete at level 76 for/5' r We can define PB, E P~'~ by 

letting 

pB,@(i) = U p,,(/5)(i) 
tlEBt 

for every/5 E wl \ {a} and i G/~.  

Let T~ = {UBt: t E T' [6} and let pUB, = pB,. This ends the construction. 

Since Sa is stationary and by (2), {76:6 E wl} is a club set, then there exists 

6 E Wl such that 7s E S~. But this has been shown impossible. 
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SUBCLAIM 9.4.2: Forcing with P~ w//l not add any new branches to T a. 
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Proof  of Subclaim 9.4.2: Similar (but much easier) to the proof of Subclalm 

9.4.1. 

By Subclaim 9.4.1 and Subclalm 9.4.2, all the branches of Tc, in M[G] are 

already in M[G1][G~]. But in M[G1][G~] 2 '~' = pc,. So IB(T~')] = pc,. II 

Concludlng remarks: (1) p, pc, and A are not necessarily regular. 

(2) In Theorem 9, we can also have larger number of trees. For this we use 

Sc,'s which are only almost disjoint. 

(3) In the proof of Theorem 9, if we do not want to use stationary sets, we 

can force the trees as part of the forcing, and then prove that they are "pruned 

together", so using the stationary sets simplifies the matter. 

(4) We have used (lim(wl) \ S)-complete tree T (i. e. every branch of T [ 6 for 

6 E lira(w1) \ S has an upper bound in T). Our consideration leads naturally to S- 

Kurepa trees. T is called an S-Kurepa tree if T = (Jc,e,,~ T(a) ,  where ht(T(a))  = 

a,  T(a)  = U~<c,T(fl) if tr 6 lim(wl) and ITC,N{UB: B 6 B(T(a))}l  <_ w if 

a 6 S. So we may well consider S-Kurepa and (lira(w1) \ S)-complete trees. 

(5) The T we build are not only (lim(wl) \ S)-complete, but  also strongly 

proper (see [Sl] or/and [S2]). 
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